Shehata Dataset Phase 2 Completion Report¶
⚠️ LEGACY DOCUMENTATION (v1.x)
This document references old root imports (e.g.,
from model import ESMEmbeddingExtractor). In v2.0.0+, use:from antibody_training_esm.core.embeddings import ESMEmbeddingExtractorSee v2-structure-migration.md for import structure guide.
Date: 2025-10-31 (Original) | 2025-11-02 (P0 Blocker Found & Fixed) Issue: #3 - Shehata dataset preprocessing (Phase 2) Status: ✅ COMPLETE (P0 blocker resolved)
✅ RESOLUTION (2025-11-02)¶
P0 BLOCKER FIXED:
Gap characters in fragment sequences have been ELIMINATED.
Fix Applied:
- Updated preprocessing/shehata/step2_extract_fragments.py:63 to use annotation.sequence_aa (gap-free)
- Regenerated all 16 fragment CSVs
- Enhanced validation script with gap detection
Validation Results:
✅ All 16 fragment CSVs: 0 gap characters
✅ ESM-1v embedding compatibility: CONFIRMED
✅ Previously affected sequences (13 VH, 4 VL, 17 Full): ALL CLEAN
Regression Prevention:
- scripts/validation/validate_shehata_conversion.py now includes fragment gap validation
- Automatic detection prevents P0 blocker from re-occurring
Status: ✅ Phase 2 PRODUCTION-READY
Timeline¶
2025-10-31: Phase 2 initially completed (gap issue not detected) 2025-11-02: Deep analysis revealed P0 blocker (gap characters in fragments) 2025-11-02: Fix applied, validated, and regression prevention implemented
Executive Summary¶
✅ All 16 fragment types successfully extracted and validated ✅ ANARCI re-annotation using IMGT scheme complete (riot_na v4.0.5) ✅ Output format compatible with existing pipeline ✅ Ready for model training and inference (ESM embedding validated)
Deliverables¶
1. Preprocessing Script¶
File: preprocessing/shehata/step2_extract_fragments.py (288 lines)
Key Features: - Uses ANARCI (riot_na) for IMGT-based CDR/FWR annotation - Processes amino acid sequences (not nucleotides like Boughter) - Extracts all 16 fragment types following Sakhnini et al. 2025 - Handles annotation failures gracefully with error reporting - Progress tracking with tqdm - Comprehensive validation summary
Usage:
Performance: - Annotated: 398/398 antibodies (100% success rate) - Processing time: ~3.3 seconds - Speed: ~120 antibodies/second
2. Fragment CSV Files¶
Location: data/test/shehata/
Files Created: 16 fragment-specific CSVs
| Fragment | Filename | Rows | Length Range | Mean Length |
|---|---|---|---|---|
| Full variable domains | ||||
| VH | VH_only_shehata.csv | 398 | 114-140 aa | 122.6 aa |
| VL | VL_only_shehata.csv | 398 | 103-120 aa | 108.9 aa |
| Heavy chain CDRs | ||||
| H-CDR1 | H-CDR1_shehata.csv | 398 | 3-10 aa | 8.2 aa |
| H-CDR2 | H-CDR2_shehata.csv | 398 | 6-13 aa | 7.9 aa |
| H-CDR3 | H-CDR3_shehata.csv | 398 | 7-33 aa | 15.4 aa |
| Light chain CDRs | ||||
| L-CDR1 | L-CDR1_shehata.csv | 398 | 4-14 aa | 7.7 aa |
| L-CDR2 | L-CDR2_shehata.csv | 398 | 3-7 aa | 3.1 aa |
| L-CDR3 | L-CDR3_shehata.csv | 398 | 5-20 aa | 9.6 aa |
| Concatenated CDRs | ||||
| H-CDRs | H-CDRs_shehata.csv | 398 | 22-49 aa | 31.5 aa |
| L-CDRs | L-CDRs_shehata.csv | 398 | 14-32 aa | 20.4 aa |
| All-CDRs | All-CDRs_shehata.csv | 398 | 40-69 aa | 51.9 aa |
| Framework regions | ||||
| H-FWRs | H-FWRs_shehata.csv | 398 | 89-101 aa | 91.0 aa |
| L-FWRs | L-FWRs_shehata.csv | 398 | 87-92 aa | 88.7 aa |
| All-FWRs | All-FWRs_shehata.csv | 398 | 178-190 aa | 179.7 aa |
| Paired/Full | ||||
| VH+VL | VH+VL_shehata.csv | 398 | 218-248 aa | 231.5 aa |
| Full | Full_shehata.csv | 398 | 218-248 aa | 231.5 aa |
File Format (standardized):
id,sequence,label,psr_score,b_cell_subset,source
ADI-38502,EVQLLESGGGLVKPGG...,0,0.0,IgG memory,shehata2019
Columns:
- id: Clone identifier
- sequence: Fragment sequence (CDR, FWR, or full domain)
- label: Binary non-specificity (0=specific, 1=non-specific)
- psr_score: Polyspecific Reagent score (continuous)
- b_cell_subset: B cell origin (Naïve, IgG memory, IgM memory, LLPCs)
- source: Dataset provenance (shehata2019)
Validation Results¶
Fragment Length Validation¶
✅ All fragment lengths match expected antibody structure:
- VH domains: 114-140 aa (expected: ~110-130 aa) ✓
- VL domains: 103-120 aa (expected: ~100-115 aa) ✓
- H-CDR3: 7-33 aa (highly variable, expected range) ✓
- L-CDR3: 5-20 aa (shorter than heavy, expected) ✓
- CDR½: 3-14 aa (conserved, expected) ✓
- FWRs: 87-101 aa per chain (expected: ~85-100 aa) ✓
Label Distribution Validation¶
✅ All fragments preserve original label distribution:
- Specific (label=0): 391 antibodies (98.2%)
- Non-specific (label=1): 7 antibodies (1.8%)
- Matches Phase 1 CSV: ✓
- Matches paper (7/398): ✓
Data Integrity Validation¶
✅ All fragment files validated:
- Total files created: 16/16 ✓
- All files have 398 rows: ✓
- No missing sequences: ✓
- No annotation failures: 398/398 success ✓
- Standardized format: ✓
Comparison with Paper Methodology¶
Sakhnini et al. 2025 (Methods Section 4.3)¶
Paper's approach:
"sequences were annotated in the CDRs using ANARCI following the IMGT numbering scheme"
Our implementation: - ✅ Used ANARCI (riot_na v4.0.5) - ✅ IMGT numbering scheme - ✅ Extracted all 16 fragment types tested in paper - ✅ Mean pooling of ESM-1v embeddings (documented in data.py)
Paper's fragments (Section 2.1, Table 4): - VH, VL ✓ - H-CDR1, H-CDR2, H-CDR3 ✓ - L-CDR1, L-CDR2, L-CDR3 ✓ - H-CDRs, L-CDRs ✓ - H-FWRs, L-FWRs ✓ - VH+VL, Full ✓ - All-CDRs, All-FWRs ✓
Match: 16/16 fragments ✅
Key Differences from Phase 1¶
| Aspect | Phase 1 (Basic CSV) | Phase 2 (Fragment Extraction) |
|---|---|---|
| Input | Excel (mmc2.xlsx) | CSV (shehata.csv) |
| Processing | Sanitization + conversion | ANARCI annotation + fragment extraction |
| Output | 1 CSV (full VH/VL) | 16 CSVs (all fragment types) |
| Annotation | None (used pre-annotated) | ANARCI re-annotation (IMGT) |
| Integration | Compatible with load_local_data() | Compatible with load_local_data() |
| Purpose | Basic test set | Fragment-specific model testing |
Integration Compatibility¶
Data Loading¶
Pattern:
from data import load_local_data
df = load_local_data(
'data/test/shehata/fragments/VH_only_shehata.csv',
sequence_column='sequence',
label_column='label'
)
Compatible with:
- ✅ data.load_local_data()
- ✅ data.preprocess_raw_data() (ESM embedding)
- ✅ test.py (model evaluation)
- ✅ Existing training pipeline
File Naming Convention¶
Pattern: {fragment_type}_shehata.csv
Examples:
- VH_only_shehata.csv (matches training: VH_only_training_ready.csv)
- H-CDR3_shehata.csv
- VH+VL_shehata.csv
Code Quality¶
Following Rob C. Martin Clean Code Principles¶
✅ Single Responsibility: Each function has one clear purpose
✅ Descriptive Names: annotate_sequence(), create_fragment_csvs()
✅ Small Functions: Average 20-30 lines per function
✅ Error Handling: Try/except with informative warnings
✅ Type Hints: All function signatures typed
✅ Documentation: Comprehensive docstrings
✅ No Magic Numbers: All constants named and explained
Pattern Consistency¶
Follows preprocessing/process_boughter.py pattern:
- Same annotator initialization pattern
- Similar fragment extraction logic
- Consistent CSV output format
- Compatible with existing pipeline
Files Modified/Created¶
New Files (Phase 2):¶
preprocessing/shehata/step2_extract_fragments.py(288 lines)- Main preprocessing script
- ANARCI annotation + fragment extraction
-
Comprehensive validation reporting
-
data/test/shehata/fragments/*.csv(16 files) - All fragment-specific CSVs
- Standardized format
-
Ready for model inference
-
docs/datasets/shehata/shehata_phase2_completion_report.md(THIS FILE) - Phase 2 completion documentation
- Comprehensive validation results
Modified Files (November 2025 Cleanup):¶
Note: The documentation updates mentioned in the original version of this file were completed during the November 2025 cleanup:
docs/datasets/shehata/shehata_preprocessing_implementation_plan.md- Status updated to "Complete - Both Phase 1 and Phase 2 fully operational" (2025-11-06)
-
Marked all checklist items as complete
-
docs/datasets/shehata/archive/shehata_conversion_verification_report.md - Archived as historical document (2025-11-06)
- P0 blocker warning updated to show resolution
Outstanding Tasks (Post-Phase 2)¶
Model Evaluation (Not Part of Preprocessing):¶
- ✅ Load fragments with data.load_local_data()
- ✅ Generate ESM-1v embeddings for all 16 fragment types
- ✅ Run inference with trained models (Achieved 58.29% accuracy with PSR threshold)
- ✅ Compare performance across fragments
- ✅ Reproduce paper Figure 3C-D (PSR predictions) - See
docs/research/benchmark-results.md - ✅ Create performance comparison table (Table 4 from paper)
Repository Hygiene:¶
- ✅ Create comprehensive PR for Issue #3
- ✅ Update main README with Shehata dataset info
- ✅ Add data/test/shehata/ to .gitignore if needed
- ✅ Document dependencies (riot_na) in requirements.txt
Dependencies¶
Python Packages (Phase 2):¶
pandas>=1.5.0 # CSV handling
riot_na==4.0.5 # ANARCI wrapper (IMGT numbering)
biopython==1.84 # Sequence handling (riot_na dependency)
tqdm>=4.65.0 # Progress bars
Installation:¶
Note: riot_na has ANARCI pre-compiled, no manual ANARCI installation needed.
Performance Metrics¶
Processing Performance:¶
- Total antibodies: 398
- Annotation success rate: 100% (398/398)
- Processing time: ~3.3 seconds
- Speed: ~120 antibodies/second
- Fragment CSVs created: 16
- Total output size: ~750 KB
Data Quality:¶
- Invalid sequences: 0
- Annotation failures: 0
- Missing data: 0
- Label preservation: 100%
Verification Checklist¶
Phase 2 Success Criteria:¶
-
preprocessing/shehata/step2_extract_fragments.pyscript exists - 16 fragment-specific CSV files generated
- ANARCI re-annotation using IMGT scheme
- All fragments validated for sequence quality
- Fragment CSVs have standardized format
- Comprehensive documentation of preprocessing choices
- Code follows clean code principles
- Pattern consistent with process_boughter.py
- Can reproduce paper's Figure 3 results (requires model training - not part of preprocessing)
Conclusion¶
✅ Phase 2 preprocessing is 100% complete and validated
Key Achievements: - Implemented full ANARCI-based fragment extraction - Created all 16 fragment types following paper methodology - Achieved 100% annotation success rate - Maintained clean code principles throughout - Full integration compatibility with existing pipeline - Comprehensive documentation and validation
Ready for: - Model training/inference on fragment-specific inputs - Paper result reproduction (Figure 3, Table 4) - Production use in antibody non-specificity prediction - PR submission to close Issue #3
Next Steps¶
Immediate (for Issue #3 PR): 1. Test one fragment CSV with existing model (if available) 2. Create comprehensive PR with all Phase 1 + Phase 2 work 3. Update main README to document Shehata dataset
Future (separate issues/PRs): 1. Reproduce paper results (Figure 3C-D, Table 4) 2. Train fragment-specific models 3. Compare performance across all 16 fragment types 4. Optimize threshold for binary classification
Verified by: - Direct code execution ✅ - Fragment length validation ✅ - Label distribution verification ✅ - Format consistency checks ✅ - Integration pattern validation ✅
Sign-off: Phase 2 COMPLETE ✅