Config
config
¶
Classes¶
ModelConfig
¶
Bases: BaseModel
Protein language model configuration.
Controls which HuggingFace model to load and execution device. Supports ESM-1v, ESM-2, and AMPLIFY models.
Source code in src/antibody_training_esm/models/config.py
Functions¶
validate_amplify_constraints()
¶
Enforce AMPLIFY-specific requirements at config validation time.
AMPLIFY has strict requirements due to a known padding/batching bug (see https://www.nature.com/articles/s41598-025-05674-x): - batch_size must be 1 (padding bug causes non-reproducible embeddings) - trust_remote_code must be True (AMPLIFY uses custom HuggingFace code)
Source code in src/antibody_training_esm/models/config.py
DataConfig
¶
Bases: BaseModel
Dataset configuration.
Specifies input files and caching directories.
Source code in src/antibody_training_esm/models/config.py
Functions¶
validate_train_file_exists(v)
classmethod
¶
Ensure train file exists at config load time.
Source code in src/antibody_training_esm/models/config.py
validate_test_file_exists(v)
classmethod
¶
Ensure test file exists if provided (P2.4 fix: now optional).
Source code in src/antibody_training_esm/models/config.py
create_cache_dir(v)
classmethod
¶
Create cache directory if it doesn't exist.
ClassifierConfig
¶
Bases: BaseModel
Classifier configuration (strategy-agnostic).
Supports both LogisticRegression and XGBoost strategies.
Source code in src/antibody_training_esm/models/config.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | |
Functions¶
unify_type_and_strategy(data)
classmethod
¶
Handle both 'type' and 'strategy' fields consistently.
P1.1 fix: Hydra YAMLs use 'type:', Pydantic expects 'strategy'. This validator ensures they're unified and conflicts are detected.
Source code in src/antibody_training_esm/models/config.py
TrainingConfig
¶
Bases: BaseModel
Training orchestration configuration.
Controls cross-validation, logging, and model persistence.
Source code in src/antibody_training_esm/models/config.py
ExperimentConfig
¶
Bases: BaseModel
Experiment tracking metadata.
Used for organizing Hydra outputs and logging.
Source code in src/antibody_training_esm/models/config.py
TrainingPipelineConfig
¶
Bases: BaseModel
Root configuration for training pipeline.
Mirrors Hydra's config.yaml structure.
Source code in src/antibody_training_esm/models/config.py
Functions¶
from_hydra(cfg)
classmethod
¶
Convert Hydra DictConfig to Pydantic model.
This is the main entry point for validation.