Prediction
prediction
¶
Classes¶
Predictor
¶
A class to handle the antibody non-specificity prediction pipeline.
This class encapsulates the model loading, embedding extraction, and prediction logic. It follows the principle of 'prepare once, execute many' (though for CLI it's usually once).
Source code in src/antibody_training_esm/core/prediction.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | |
Attributes¶
classifier
property
¶
Lazy loads the classifier.
Supports: 1. Legacy Pickle (.pkl): Loaded via joblib. 2. Production NPZ (.npz): Loaded via load_model_from_npz using accompanying JSON config. 3. XGBoost native (.xgb): Loaded via load_model_from_xgb (P2.2 fix).
embedder
property
¶
Lazy loads the ESM or AMPLIFY embedding extractor.
Optimization
If the loaded classifier is a BinaryClassifier instance (which contains its own embedding_extractor), we reuse it to avoid double-loading the 650MB model into GPU/CPU memory.
Functions¶
predict(sequences, threshold=0.5, assay_type=None)
¶
Predict specificity for a list of sequences.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sequences
|
list[str]
|
A list of antibody amino acid sequences. |
required |
threshold
|
float
|
Decision threshold (default: 0.5). |
0.5
|
assay_type
|
AssayType | None
|
'PSR' or 'ELISA' to use calibrated thresholds (overrides threshold). |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A DataFrame containing 'prediction' (string) and 'probability' (float) columns. |
Source code in src/antibody_training_esm/core/prediction.py
predict_dataframe(df, sequence_col='sequence', threshold=0.5, assay_type=None)
¶
Predict specificity for sequences in a DataFrame and append results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
Input DataFrame. |
required |
sequence_col
|
str
|
Name of the column containing sequences. |
'sequence'
|
threshold
|
float
|
Decision threshold. |
0.5
|
assay_type
|
AssayType | None
|
'PSR' or 'ELISA' (overrides threshold). |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A copy of the input DataFrame with 'prediction' and 'probability' columns appended. |
Source code in src/antibody_training_esm/core/prediction.py
predict_single(sequence, threshold=0.5, assay_type=None)
¶
Predict single sequence with Pydantic validation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sequence
|
str | PredictionRequest
|
Raw string OR PredictionRequest model |
required |
threshold
|
float
|
Decision threshold (ignored if PredictionRequest passed) |
0.5
|
assay_type
|
AssayType | None
|
Assay type (ignored if PredictionRequest passed) |
None
|
Returns:
| Type | Description |
|---|---|
PredictionResult
|
PredictionResult model |
Source code in src/antibody_training_esm/core/prediction.py
Functions¶
run_prediction(input_df, cfg)
¶
Helper function to run prediction using Hydra config.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_df
|
DataFrame
|
DataFrame containing an sequence column. |
required |
cfg
|
DictConfig
|
The Hydra configuration object. |
required |
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with 'prediction' and 'probability' columns added. |